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Abstract
We study the Hopfield model on a random graph in scaling regimes where
the average number of connections per neuron is a finite number and the spin
dynamics is governed by a synchronous execution of the microscopic update
rule (Little–Hopfield model). We solve this model within replica symmetry,
and by using bifurcation analysis we prove that the spin-glass/paramagnetic
and the retrieval/paramagnetic transition lines of our phase diagram are
identical to those of sequential dynamics. The first-order retrieval/spin-glass
transition line follows by direct evaluation of our observables using population
dynamics. Within the accuracy of numerical precision and for sufficiently
small values of the connectivity parameter we find that this line coincides with
the corresponding sequential one. Comparison with simulation experiments
shows excellent agreement.

PACS numbers: 87.18.Sn, 02.10.Ox, 05.50.+q, 75.10.Nr

1. Introduction

Since the first analytical work describing pattern recall was presented and the theoretical
foundations describing the operation of neural networks were subsequently set, the progress
in the field of attractor neural network models has been advancing, revealing interesting
properties. Early analytical attempts to solve non-trivial neural network systems were
analytically constrained to the study of fully-connected ones. From a real (i.e. biological)
point of view one would ideally prefer to study models of sparse connectivity. Subsequently,
theoretical work turned (among other directions) to sparse models and, in particular, to
the so-called extremely diluted ones [1]. These could still be solved exactly owing to the
simplification of considering system sizes exponentially bigger than the average connectivity
per neuron (while both of these numbers were eventually sent to infinity).

One direction in developing the neural network theory further towards realism implies
moving away from the simplifications made in extremely diluted systems and considering
finite degrees of connectivity. This, however, appears to be a highly non-trivial step ahead

0305-4470/04/399087+13$30.00 © 2004 IOP Publishing Ltd Printed in the UK 9087

http://stacks.iop.org/ja/37/9087
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since at an early stage of solving the relevant equations one is confronted with more than the
two traditional observables (the magnetization and the overlap); in fact, one is required to
consider an order-parameter function.

Although initial attempts to solve such models showed the underlying analytical
complexity [2, 3], the more refined mathematical tools were only relatively recently developed
and in fact for applications different from neural networks (for instance, for optimization
problems [4] or error-correcting codes [5]). The first study which applied the finite-
connectivity methodology to neural network problems has been very recently presented in
[6], where phase diagrams were presented for a variety of synaptic kernels. There, the
authors study neural networks in which the microscopic neuronal dynamics is a sequential
execution of an update rule (describing alignment to post-synaptic potentials). In this paper
we examine the effect of choosing a synchronous microscopic dynamics in Hopfield models
of finite connectivity, i.e. one in which neurons are updated in parallel at each time step.
The equilibrium properties of the parallel and sequential dynamics Hopfield model were first
studied in the parameter regime of the so-called extreme dilution [10, 11]. These two different
types of dynamics are known to share very interesting properties. For instance, in simple
ferromagnetic models one can prove that thermodynamic observables become identical [7].
It is yet unclear to what extent the two types of dynamical models share these common
equilibrium features. For example, it is known that the phase diagram of the synchronous
Hopfield model changes [8, 9]1 whereas that of the Sherrington–Kirkpatrick model remains
unaffected [12].

This paper is organized as follows: in the following section we present definitions of
our model. In section 3 we derive the saddle point equations for the free energy and make
our replica-symmetric ansatz. In section 4 we give expressions of the free energy in terms
of the replica symmetric order function whereas our results and phase diagrams are given in
section 5.

2. Definitions

We study neural network models of N binary neurons σ = (σ1, . . . , σN) with σi = −1
representing ‘at rest’ and σi = 1 the ‘firing’ state. The miscroscopic neuron dynamics is a
stochastic alignment to ‘local fields’ (the post-synaptic potentials) in which updates in neuronal
states are made for all i ∈ {1, . . . , N} in a fully synchronous way at each discrete time step:

Prob[σi(t + 1) = ±1] = 1
2 [1 ± tanh(βhi(σ(t)))] (1)

where hi(σ(t)) = ∑
j Jij σj (t). The parameter β ∈ [0,∞) controls the amount of thermal

noise in the dynamics with β = ∞ corresponding to a fully deterministic execution of (1) and
β = 0 to a fully random execution. The quantities Jij describe interaction couplings. If one
expresses (1) in terms of the microscopic state probabilities pt(σ):

pt+1(σ) =
∑
σ′

W [σ; σ′]pt(σ
′) W [σ; σ′] =

N∏
i=1

eβσihi (σ
′)

2 cosh[βhi(σ′)]
(2)

then, for any finite β and finite N the process (2) is ergodic and evolves to a unique distribution
p∞(σ). It can be shown that this is a unique equilibrium state (obeying detailed balance)

1 This difference seems to be an artefact of the replica symmetric approximation. The two phase diagrams become
identical within full replica symmetry breaking [8], although it is unclear at which stage of the breaking scheme this
occurs.
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if and only if Jij = Jji [16].2 At equilibrium, the microscopic state probabilities acquire the
form p∞ ∼ exp[−βH(σ)], where

H(σ) = − 1

β

∑
i

log[2 cosh(βhi(σ))] (3)

is the Hamiltonian. For the interactions Jij we now take

Jij = cij

c

p∑
µ=1

ξ
µ

i ξ
µ

j . (4)

This corresponds to storing p memories ξi = (
ξ 1
i , . . . , ξ

p

i

) ∈ {−1, 1}p among the synapses
in a Hebbian-type way. The variables cij ∈ {0, 1} with cij = cji represent dilution, while
c = (1/N)

∑
i,j cij corresponds to the average connectivity of the network. Models of the

type (4) with c → ∞ (while c ∼ log N ) are known as extremely diluted and due to their
simplicity have been studied extensively (see for instance [10, 11, 13–15] and references
therein). What is less known are properties of these systems in the non-trivial scaling regime
of finite connectivity where c ∼ O(1) (with the probability c/N → 0). Due to the complicated
methodology required such systems have only recently been studied in [6] where a thorough
bifurcation analysis was performed and phase diagrams were derived. For the distribution of
the random variable cij we will consider

P(cij ) = c

N
δcij ,1 +

(
1 − c

N

)
δcij ,0 (5)

for all pairs (i, j). All thermodynamic quantities will have to be averaged over (5). Note that
due to the system’s sparse connectivity the number of patterns can only be finite.

To derive observable quantities we will calculate the free energy per neuron f =
−limN→∞ 1

βN

〈
log

∑
σ e−βH(σ)

〉
{cij }, with 〈· · ·〉 denoting the average over the distribution of

dilution variables. As in all synchronous dynamics models, the evaluation of the free energy
is greatly simplified by introducing an extra set of spins so that f can be rewritten as

f = − lim
N→∞

1

βN

〈
log

∑
στ

e−βH(σ,τ )

〉
{cij }

H(σ, τ ) = −
∑
ij

σiJij τj . (6)

Equation (6) will be the starting point for our analysis.

3. Saddle-point equations

In order to calculate the free energy (6) we begin by invoking the replica identity 〈log Z〉 =
limn→0

1
n

log〈Zn〉. One can then take the average over the dilution variables resulting in

f = − lim
N→∞

lim
n→0

1

βNn
log

∑
σ1···σn

∑
τ 1···τ n

× exp


 c

2N

∑
ij

(
exp

(
β

c
(ξi · ξj )

∑
α

(
σα

i τ α
j + σα

j τα
i

)) − 1

)
 (7)

where ξi · ξj = ∑
µ ξ

µ

i ξ
µ

j . Note that at this stage an exponential has appeared as an argument
of another exponential. Here, effectively, the innermost exponential introduces an infinite

2 Note that, unlike sequential models where detailed balance requires the exclusion of self-interactions, this is not a
prerequisite here. However, due to the scaling regime of finite connectivity terms originating from the self-interacting
part will for N → ∞ give a vanishing contribution to thermodynamic quantities.
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number of observables. However, unlike systems of full connectivity or of extreme dilution
where only the linear and quadratic observables (order parameters) survive in the limit
N → ∞, all cumulants play a role here. They can be recast in an order-parameter function.
This complication is a direct consequence of the scaling regime of finite connectivity.

It is now convenient to use the concept of sublattices [17] which divide the space of sites
into 2p groups Iξ = {i|ξi = ξ}. We define σi = (

σ 1
i , . . . , σ n

i

)
and abbreviate the averages

over the sublattices by 〈F(ξ)〉ξ = ∑
ξ pξF(ξ) with the probabilities pξ ≡ |Iξ|/N . Then the

free energy becomes

f = − lim
N→∞

lim
n→0

1

βNn
log

∑
σ1···σn

∑
τ 1···τ n

× exp


 c

2N

∑
σσ′

∑
ττ ′

∑
ξξ′

(
exp

(
β

c
(ξ · ξ′)

∑
α

(σατ ′
α + σ ′

ατα)

)
− 1

)

×
∑
i∈Iξ

δσ,σi
δτ ,τi

∑
j∈Iξ′

δσ′,σj
δτ ′,τj


 . (8)

We now see that an order function has emerged which we introduce into our expression via

1 =
∫ ∏

ξστ


dPξ(σ, τ )δ


Pξ(σ, τ ) − 1

|Iξ|
∑
i∈Iξ

δσ,σi
δτ ,τi




 . (9)

In the above expression we replace the δ-function by its integral representation (which
introduces the conjugate order-parameter function P̂ ξ(σ, τ )). We then perform the trace over
the spin variables and take the limit N → ∞ in our equations, resulting in the extremization
problem:

f = − lim
n→0

1

βn
Extr{P,P̂ }



〈∑

στ

Pξ(σ, τ )P̂ ξ(σ, τ )

〉
ξ

+

〈
log

[∑
στ

e−P̂ ξ(σ,τ )

]〉
ξ

(10)

+
c

2

〈∑
στ

∑
σ′τ ′

Pξ(σ, τ )Pξ′(σ′, τ ′)

[
exp

(
β

c
(ξ · ξ′)

∑
α

(σατ ′
α + σ ′

ατα)

)
− 1

]〉
ξξ′


 . (11)

Variation with respect to the densities Pξ(σ, τ ) and P̂ ξ(σ, τ ) gives the self-consistent equation

Pξ(σ, τ ) =
exp

[
c
〈∑

σ′τ ′Pξ′(σ′, τ ′)
(
exp

(
β

c
(ξ · ξ′)

∑
α(σατ ′

α + σ ′
ατα)

) − 1
)〉

ξ′
]

∑
σ′τ ′ exp

[
c
〈∑

σ′′τ ′′Pξ′′(σ′′, τ ′′)
(
exp

(
β

c
(ξ · ξ′′)

∑
α(σ ′

ατ ′′
α + σ ′′

α τ ′
α)
) − 1

)〉
ξ′′
]

(12)

and also allows us to eliminate P̂ ξ(σ, τ ) from the expression of the free energy which now
becomes

f = lim
n→0

1

βn
Extr

{
c

2

〈∑
στ

∑
σ′τ ′

Pξ(σ, τ )Pξ′(σ′, τ ′)

×
(

exp

(
β

c
(ξ · ξ′)

∑
α

(σατ ′
α + σ ′

ατα)

)
− 1

)〉
ξξ′

−
〈

log
∑
στ

exp

[
c

〈∑
σ′τ ′

Pξ′(σ′, τ ′)

×
(

exp

(
β

c
(ξ · ξ′)

∑
α

(σατ ′
α + σ ′

ατα)

)
− 1

)〉
ξ′

]〉
ξ

}
. (13)
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This expression requires knowledge of the densities Pξ(σ, τ ). However, the evaluation of the
self-consistent equation (12) is an impossible task unless a further simplification is made. To
proceed further we will make an assumption about the form of the densities Pξ(σ, τ ). In the
spirit of replica symmetry (RS) we will consider that permutation of spins within different
replicas leave the order parameters invariant. Here, however, due to the presence of two
species of spins we will also require that within the same replica group permutation of the
states of σα and τα also leave for all αPξ(σ, τ ) invariant:

Pξ(σ, τ ) =
∫

dh dr dt

[N (h, r, t)]n
Wξ(h, r, t) exp

(
βh

∑
α

σα + βr
∑

α

τα + βt
∑

α

σατα

)
(14)

where N (h, r, t) is the corresponding normalization constant

N (h, r, t) = 4 cosh(βh) cosh(βr) cosh(βt) + 4 sinh(βh) sinh(βr) sinh(βt). (15)

Let us finally turn to our system’s macroscopic observables. Our replicated sublattice
overlaps will be given by

m
µα
λ = 〈

ξµm
λ,α
ξ

〉
ξ

(16)

with the sublattice magnetizations defined as

m
λ,α
ξ =

∑
στ

Pξ(σ, τ )λα (17)

with λ = σ, τ . In RS the above quantities are the same for all values of the replica index.
Thereafter we will drop the index α for notational simplicity. The observables (16) will
be generated from the densities Pξ(σ, τ ). In general, from Pξ(σ, τ ) one can evaluate all
higher-order observables

L
α1···αm;γ1···γ	

ξ =
∑
στ

Pξ(σ, τ )σ α1 · · · σαmτ γ1 · · · τ γ	 . (18)

Working out the simplest of these using the RS ansatz (14) gives

mµ
σ ≡

〈
ξµ

∑
στ

Pξ(σ, τ )σ α1

〉
ξ

=
〈
ξµ

∫
dh dr dtWξ(h, r, t)

tanh(βh) + tanh(βr) tanh(βt)

1 + tanh(βt) tanh(βr) tanh(βh)

〉
ξ

(19)

qσσ ≡
〈∑

στ

Pξ(σ, τ )σ α1σα2

〉
ξ

=
〈∫

dh dr dtWξ(h, r, t)

[
tanh(βh) + tanh(βr) tanh(βt)

1 + tanh(βt) tanh(βr) tanh(βh)

]2
〉

ξ

(20)

and similar expressions follow for the observables mµ
τ , qττ and qστ .

4. The self-consistent equation and the free energy

4.1. Derivation of the self-consistent equation

In order to arrive at a self-consistent equation for the densities Wξ(h, r, t) we first substitute
the RS ansatz (14) into (12). Then, following [6], we isolate the occurrences of quantities of
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the form
∑

α σα,
∑

α τα and
∑

α σατα by inserting

1 =
∞∑

mσ =−∞

∫ 2π

0

dm̂σ

2π
exp

(
im̂σ

(
mσ −

∑
α

σα

))
(21)

1 =
∞∑

mτ =−∞

∫ 2π

0

dm̂τ

2π
exp

(
im̂τ

(
mτ −

∑
α

τα

))
(22)

1 =
∞∑

q=−∞

∫ 2π

0

dq̂

2π
exp

(
iq̂

(
q −

∑
α

σατα

))
. (23)

After some algebra we can take the limit n → 0 in our equations and arrive at∫
dWξ(h, r, t) exp(βhmσ + βrmτ + βtq)

= exp

[
c

〈 ∫
dWξ′(h′, r ′, t ′)(exp(mσK1(h

′, r ′, t ′; ξ · ξ′)

+ mτK2(h
′, r ′, t ′; ξ · ξ′) + qK3(h

′, r ′, t ′; ξ · ξ′)) − 1)

〉
ξ′

]
(24)

where we have used the notation dWξ(h, r, t) = dh dr dtWξ(h, r, t) and introduced

K1(h
′, r ′, t ′; ξ · ξ′) = 1

4
log

�++�+−
�−+�−−

(25)

K2(h
′, r ′, t ′; ξ · ξ′) = 1

4
log

�++�−+

�+−�−−
(26)

K3(h
′, r ′, t ′; ξ · ξ′) = 1

4
log

�++�−−
�+−�−+

(27)

with

�στ ≡ �στ (h
′, r ′, t ′; ξ · ξ′) = 4 cosh

[
βh′ + σ

β

c
(ξ · ξ′)

]
cosh

[
βr ′ + τ

β

c
(ξ · ξ′)

]
cosh[βt ′]

+ 4 sinh

[
βh′ + σ

β

c
(ξ · ξ′)

]
sinh

[
βr ′ + τ

β

c
(ξ · ξ′)

]
sinh[βt ′]. (28)

Performing an inverse Fourier transform to (24), expanding the right-hand side and integrating
over the magnetizations mσ ,mτ and the overlap q, we obtain

Wξ(h, r, t) =
∞∑

k=0

e−cck

k!

〈
· · ·

〈∫ [
k∏

l=1

dWξl (h′
l , r

′
l , t

′
l )

]

× δ

[
h − 1

β

k∑
l=1

K1(h
′
l , r

′
l , t

′
l ; ξ · ξl )

]
δ

[
r − 1

β

k∑
l=1

K2(h
′
l , r

′
l , t

′
l ; ξ · ξl )

]

× δ

[
t − 1

β

k∑
l=1

K3(h
′
l , r

′
l , t

′
l ; ξ · ξl )

]〉
ξ1

· · ·
〉

ξk

. (29)
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Figure 1. Typical profiles of the marginal densities Wh
ξ (h) for p = 6, c = 4, T = 0.1 (left picture,

corresponding to the spin-glass region of figure 2) and for p = 2, c = 5, T = 0.1 (right picture,
corresponding to the retrieval region of figure 2). Note that since p is even the peaks are located at
h = 2l/c with l integer.

Expression (29) is the final result from which we evaluate the densities Wξ(h, r, t). Although
appearing to be a daunting numerical task it can be evaluated using the simple algorithm of
‘population dynamics’ as described e.g. in [18]. This relies on the local ‘tree-like’ structure
of finitely-connected networks of spins and it consists of having a large population of triplets
(hl, rl, tl) which are to be updated for a large number of iteration steps in the following
way: one first selects a number k from a Poisson distribution of mean c. Then, one chooses
l = 1, . . . , k triplets (hl, rl, tl) and l sublattices ξl at random and calculates the expressions
appearing in the delta functions. Finally, one selects a new triplet (h, r, t) and a new sublattice
ξ at random, and updates them using the calculated expressions.

To get an idea about the profile of the densities Wξ(h, r, t) we have applied the
previous algorithm to study the marginal densities Wh

ξ (h) = ∫
dr dtWξ(h, r, t),Wr

ξ (r) =∫
dh dtWξ(h, r, t) and Wt

ξ(t) = ∫
dh drWξ(h, r, t). First, we observe that close to the zero-

temperature limit the marginals Wh
ξ (h) and Wr

ξ (r) become a collection of delta peaks; in
this limit, due to the absence of thermal noise, the effective fields {h, r} become identical
to the true local fields. Since the average number of connections per neuron is here a finite
number and the couplings are discrete, the local fields are a multiple integer3 [3] of 1/c (see
figure 1 for typical profiles of the marginal densities). As one moves away from the T = 0
regime the profile of the marginal densities Wh

ξ (h) and Wr
ξ (r) takes a non-trivial form until the

paramagnetic phase is reached where one observes that Wh
ξ (x) = Wr

ξ (x) = Wt
ξ(x) = δ(x),

as it should. We have numerically evaluated the above marginals for several regions of the
parameter space and it is interesting to note that Wh

ξ (h) and Wr
ξ (r) are identical (within the

accuracy of numerical precision)4 whereas Wt
ξ(t) = δ(t). The latter implies that our RS ansatz

can be simplified further. However, this result relies on numerical observations and a rigorous
analytical proof appears somewhat hard (one cannot rely on an induction proof since at the
first iteration step of (29) the fields t must take a non-zero value). Nevertheless, it is interesting
to note that setting t = 0 to (29) completely decouples the density Wξ(h, r, t) to two identical

3 In fact, for even number of patterns p we have that the local fields present peaks at 2l/c with l integer, while for
odd p we have l/c.
4 This is of course expected since the Hamiltonian (6) is invariant under the interchange of the two spin species.
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densities

Qξ(x) =
∞∑

k=0

e−cck

k!

〈〈
· · ·

∫ [
k∏

l=1

dxl Qξl (xl)

]

× δ

[
x − 1

β

k∑
l=1

ath

(
tanh[βxl] tanh

[
β

c
(ξ · ξl )

])]〉
ξ1

· · ·
〉

ξk

(30)

with x = {h, r}. Note that this equation is now the same as the one that follows from the
analysis of [6], as it should.

4.2. The free energy

Let us now express the free energy (13) as function of the densities Wξ(h, r, t). The first
term comprising (13) (energetic part) can be calculated without difficulty. One uses the RS
ansatz (14) to replace the distributions Pξ(σ, τ ) by the densities Wξ(h, r, t) and subsequently
one performs the spins summations and takes the limit n → 0. The second term is slightly
more complicated. First, we expand the exponential function. This replicates the traces over
the spins and sublattice variables. Inserting then for each of the replicated densities the RS
ansatz (14) leads to〈

log
∑
στ

exp

[
c

〈∑
σ̂τ̂

Pξ′(σ̂, τ̂ )

(
exp

(
βJ

c
(ξ · ξ′)

∑
α

(σατ̂α + σ̂ατα)

)
− 1

)〉
ξ′

]〉
ξ

=
〈

log
∞∑

k=0

e−cck

k!

〈
· · ·

〈 ∫ [
k∏

l=1

dWξl (hl, rl, tl)

]
n∏

α=1

∑
σατα

k∏
l=1

∑
σ̂ l

α τ̂ l
α

× exp

(
β

c
(ξ · ξl)

(
σατ̂ l

α + σ̂ l
ατ

)
+ βhlσ̂

l
α + βτ̂ l

α + βtlσ̂
l
ατ̂ l

α

)〉
ξ1

· · ·
〉

ξk

〉
ξ

. (31)

Performing the spin summations in the above equation and using the simple expression
F(σα, τα) = ∑

στ δσ,σα
δτ,τα

F (σ, τ ) to relocate the occurrences of σα and τα , we can take the
limit n → 0. The final result for the free energy (13) is then

f = − 1

β

∞∑
k=0

e−cck

k!

〈〈
· · ·

〈∫ [
k∏

l=1

dWξl (hl, rl, tl)

]

× log

[ ∑
στ=±

k∏
l=1

�στ (hl, rl, tl; ξ · ξl )

N (hl, rl, tl)

]〉
ξ1

· · ·
〉

ξk

〉
ξ

+
c

2β

〈∫
dWξ(h, r, t) dWξ′(h′, r ′, t ′)

× log

[∑
ττ ′=±cosh

[
βh + βtτ + β

c
(ξ · ξ′)τ ′]cosh

[
βh′+ βt ′τ ′+ β

c
(ξ · ξ′)τ

]
eβrτ + βr ′τ ′∑

ττ ′=±cosh[βh + βtτ ] cosh[βh′+ βt ′τ ] eβrτ + βr ′τ ′

]〉
ξξ′

.

(32)

5. Phase diagrams

5.1. Bifurcation analysis

The numerical observations concerning the densities Wξ(h, r, t) in section 4 support the
equivalence between the parallel and sequential versions of the finite-c Hopfield model. In
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this section we will show further that one can analytically prove that the location of the
second-order transitions between paramagnetic/spin-glass and paramagnetic/retrieval phases
is identical to those of sequential dynamics.

Our bifurcation analysis is similar in spirit to [6]. First, we note that there exists a trivial
solution Wξ(h, r, t) = δ(h)δ(r)δ(t) that solves (29) for all ξ, which is symmetric under the
inversion of the fields h → −h, r → −r and t → −t . This solution, as can be easily
confirmed, corresponds to the high-temperature paramagnetic state where no recall is possible
and mσ

ξ = mτ
ξ = 0. As the temperature is lowered from T = ∞ we expect non-trivial solutions

to bifurcate from the paramagnetic one. The new solutions can either preserve the previous
inversion symmetry (spin-glass solution) or not (ferromagnetic solution). To determine the
transition temperature at which these new solutions occur we first assume that close to the
transition

∫
dWξ(h, r, t)h	 = O(ε	),

∫
dWξ(h, r, t)r	 = O(ε	) and

∫
dWξ(h, r, t)t	 = O(ε	).

We can then expand equation (24) and identify term by term each expression in the resulting
power series on the left- and right-hand sides of (24). To second order, this one-to-one
correspondence first indicates that integrals carrying the field t must vanish. We then obtain∫

dWξ(h, r, t)h = c

〈∫
dWξ′(h, r, t)h tanh

[
β

c
(ξ · ξ′)

]〉
ξ′

(33)

∫
dWξ(h, r, t)r = c

〈∫
dWξ′(h, r, t)r tanh

[
β

c
(ξ · ξ′)

]〉
ξ′

(34)

∫
dWξ(h, r, t)h2 −

[∫
dWξ(h, r, t)h

]2

= c

〈∫
dWξ′(h, r, t)h2 tanh

[
β

c
(ξ · ξ′)

]〉
ξ′

(35)

∫
dWξ(h, r, t)r2 −

[∫
dWξ(h, r, t)r

]2

= c

〈∫
dWξ′(h, r, t)r2 tanh

[
β

c
(ξ · ξ′)

]〉
ξ′

. (36)

These four equations mark the different types of transitions away from the paramagnetic state.
The first pair of equations will give us the transition from mσ

ξ = 0 and mτ
ξ = 0 respectively to

a non-trivial recall (ferromagnetic) state whereas the second pair will give us the transition to
the spin-glass state5. The resulting similarity in the first and second pair of the above equations
is a consequence of the equivalence of the two species of spins in our system.

Now, to determine the critical parameter values for which these transitions occur we
need to evaluate the highest temperature for which the following 2p × 2p matrices have an
eigenvalue equal to 1:

Mξξ′ = cpξ′ tanh

[
β

c
(ξ · ξ′)

]
Qξξ′ = cpξ′ tanh2

[
β

c
(ξ · ξ′)

]
. (37)

These equations are identical to those found in [6]. An elegant construction of the eigenvalues
of matrices of the above form (which relies on exploiting the properties Mξξ′ = M(ξ · ξ′) and
Qξξ′ = Q(ξ · ξ′)) has already been given in [17]. Here, we state the final result determining
the transition lines, identical to that found in [6]:

P → R :
c

2pp

p∑
m=0

(
p

m

)
(p − 2m) tanh

[
β

c
(p − 2m)

]
= 1 (38)

5 Note that the integrals over the cross terms between the fields, as for instance
∫

dWξ(h, r, t)ht are not relevant,
neither in the paramagnetic/retrieval nor in the paramagnetic/spin-glass transition. In the first case they are O(ε2),
whereas in the latter the symmetry of the density W(h, r, t) under the inversion of the fields ensures that the
corresponding integrals vanish identically.
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Figure 2. Phase diagram of the finite-connectivity Hopfield model with synchronous dynamics in
the (α, T ) plane. Left: the paramagnetic/retrieval and paramagnetic/spin-glass transition lines as
obtained from the bifurcation analysis. (from lower to upper lines c = {2, 3, 5, 7, 10}). Right: the
c = 7 phase diagram with the spin-glass/retrieval transition line (obtained by direct evaluation of
the pattern overlaps (19) using population dynamics). Markers correspond to integer p values (lines
are simply put as guides to the eye). On the retrieval/spin-glass transition line mσ = mτ = 0.

P → SG :
c

2p

p∑
m=0

(
p

m

)
tanh2

[
β

c
(p − 2m)

]
= 1. (39)

In general, the bifurcation analysis cannot be applied to determine the spin-glass/retrieval
transition line which must be computed directly from equations (29) and (19). This numerical
task becomes increasingly difficult for large values of the connectivity parameter c (since one
is required to evaluate 2p sublattice densities where p 	 c close to the spin-glass/retrieval
transition). For sufficiently small values of the connectivity parameter c (up to c = 7) we find
that this transition line is identical to that of sequential dynamics. It is interesting to note that
within replica-symmetric considerations, the c → ∞ (extremely-diluted) phase diagrams of
sequential and parallel Hopfield models are not identical, indicating that a critical c exists
above which Wt

ξ(t) is no longer given by δ(t). Determining this transition is a challenging
numerical task.

5.2. Results and comparison with simulations

By numerically solving equations (19) and (29) we find that only one magnetization component
(also called pattern overlap) m

µ
λ (16) provides non-trivial solutions (i.e. only one pattern is

retrieved while the others are zero). For notational simplicity, we will from now on denote
these non-zero solutions simply as mσ and mτ .

Plotting solutions of (38) and (39) in the (α, T ) plane (with α = p/c) results in the phase
diagram of figure 2. It has been plotted for c ∈ {2, 3, 5, 7, 10} and it consists of three phases:
a high-temperature paramagnetic phase with all observables identically zero, a retrieval phase
with mσ ,mτ 
= 0 and qλλ′ = 0 (with λ = σ, τ ) and a spin-glass phase with mσ = mτ = 0
and qλλ′ 
= 0.6 For T � 1 the spin-glass/retrieval transition is obtained numerically by direct
evaluation of our observables.

We see that already for c = 10 (upper line) the phase diagram resembles closely the one
derived in the extremely-diluted model [1] where the transition lines are given by T = 1 for
6 Note that due to the inequality qα1α2 � qα1α2α3α4 � · · · � 0 we only need to examine qα1α2 to identify the
spin-glass phase.
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Figure 3. Pattern overlaps mσ = mτ = m as functions of T = 1/β calculated from equations (19)
and (29). Parameter values are: p = 2 and c = {3, 5, 7} (from lower to upper lines). Markers
correspond to simulation experiments of N = 10 000 neurons.

α � 1 (P → R) and T = √
α for α � 1 (P → SG). From the perspective of neural network

operation, this shows that sparsely connected models retain the same qualitative features
for a wide variety of synaptic connections per neuron and can retrieve information even for
surprisingly small values of connections.

In figure 3 we present solutions of the sublattice overlap mσ (19) and mτ showing
the second-order transition from retrieval to paramagnetic states for the simplest non-trivial
case of p = 2. These have been drawn for c = {3, 5, 7} showing the effect of different
degrees of connectivity on the retrieval success. To verify our results we have performed
simulation experiments on the dynamical process (1) for a system size of N = 10 000
neurons (markers of figure 3). These appear to be in very good agreement with our theory.
The simulation experiments also show that while Hebbian-type couplings (4) lead to fixed-
point stationary solutions, anti-Hebbian ones where Jij = − cij

c
(ξi · ξj ) lead to 2-cycles with

mσ(t) = −mσ(t + 1) (and similarly for mτ ). Also, evaluation of the free energy (32) as a
function of temperature T shows that it is a monotonically decreasing function indicating that
the entropy remains positive even for low temperatures.

We have also compared our pattern overlaps with those derived from the analysis of
[6] (which has as a starting the Ising ‘sequential’ Hamiltonian) and within the accuracy
of numerical precision we have found that observables of the two systems are identical.
This result, although somewhat expected given both knowledge from earlier neural network
studies and, of course, the identity of our bifuraction results with those of [6], is also a bit
surprising: in the process of solving our equations we introduced a 3D RS ‘effective-field’
distribution (compared to the 1D sequential one of [6]). As it turns out however the system
in the process of updating fields by iteration of (29) effectively discards those which describe
species correlations and factorizes Wξ(h, r, t) to Wξ(h, r)δ(t). Henceforth, our 3D RS field
distribution reduces to a 2D one. The equivalent treatment of σ and τ then ensures (as also in
analytically simpler models) that equilibrium observables between sequential and synchronous
systems are identical (this relation, however, ceases to exist for a certain large value c since
for c → ∞ the sequential and parallel phase diagrams are different [8]).

In figure 4 we have plotted the pattern overlaps mµ
σ and mµ

τ as a function of α for different
values of the temperature (note that mµ

σ = mµ
τ ) . We have set the average connectivity to c = 7

while varying the number of patterns p (therefore the number of pattern overlaps mµ also
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Figure 4. Pattern overlap m
µ
σ = m

µ
τ = mµ as a function of α (with c = 7) for T = 0.1 (circles)

and T = 0.7 (triangles). Here we can see the first-order transition from retrieval to the spin-glass
phase at α = 6/7 and α = 7/7 for T = 0.1 and T = 0.7 respectively.

changes with α). From this graph we can complete the phase diagram (figure 2), determining
the location of the first-order transition from retrieval to spin-glass states.

6. Discussion

In this paper we have studied equilibrium properties of attractor neural network models with
finite connectivity in which neurons operate in a parallel way. This work is motivated by
the interesting properties that the two types of dynamical models share in simpler (e.g. fully-
connected) scenarios: there, and for a surprisingly large number of universality classes, one
can prove analytically that the equilibrium states following from the two different dynamical
rules are identical. Our starting point here is the Peretto Hamiltonian (3). We have followed
on the footsteps of [6] to derive the transition lines in our phase diagram and expressions
for the (sublattice) overlaps. The resulting phase diagram plotted in the (α, T ) plane then
consists of three phases: a high-temperature paramagnetic phase, a retrieval and a spin-glass
phase. The transitions from the paramagnetic phase have been determined analytically while
the first-order retrieval/spin-glass transition has been computed using population dynamics
[18]. Under our replica-symmetric considerations we have shown that the retrieval properties
of the parallel finite-connectivity Hopfield model are identical to those of the sequential one.
Comparison with numerical simulations for large system sizes shows excellent agreement.

Many questions remain to be answered for neural networks of finite connectivity. Using
the same framework (as initiated by [6]) one can proceed further with the study of multi-state
e.g. Q-Ising or Blume–Emery–Griffiths neural networks. A different approach would be to
study systems which consist of two species of operating units (as, effectively, here) but which
explicitly interact with one another. This would lead us to an Ashkin–Teller-type neural
network in which the phase diagram can be different. Non-trivial extensions would be to
study the validity of the RS solution following the schemes in [21, 22]. These will be the
subject of a future work.
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[13] Bollé D, Carlucci D M and Shim G M 2000 J. Phys A: Math. Gen. 33 6481
[14] Theumann WK and Erichsen R 2001 Phys. Rev. E 64 061902
[15] Derrida B, Gardner E and Zippelius A 1987 Europhys. Lett. 4 167
[16] Peretto P 1984 Biol. Cybern. 50 51
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